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Abstract

Optimizing operations at plug-in hybrid electric vehicle (PHEV) battery swap

stations is internally motivated by the movement to make transportation cleaner

and more efficient. A PHEV swap station allows PHEV owners to quickly exchange

their depleted PHEV battery for a fully charged battery. The PHEV-Swap Station

Management Problem (PHEV-SSMP) is introduced, which models battery charging

and discharging operations at a PHEV swap station facing nonstationary, stochas-

tic demand for battery swaps, nonstationary prices for charging depleted batteries,

and nonstationary prices for discharging fully charged batteries. Discharging through

vehicle-to-grid is beneficial for aiding power load balancing. The objective of the

PHEV-SSMP is to determine the optimal policy for charging and discharging batter-

ies that maximizes expected total profit over a fixed time horizon. The PHEV-SSMP

is formulated as a finite-horizon, discrete-time Markov decision problem and an opti-

mal policy is found using dynamic programming. Structural properties are derived,

to include sufficiency conditions that ensure the existence of a monotone optimal pol-

icy. A computational experiment is developed using realistic demand and electricity

pricing data. The optimal policy is compared to two benchmark policies which are

easily implementable by PHEV swap station managers. Two designed experiments

are conducted to obtain policy insights regarding the management of PHEV swap

stations. These insights include the minimum battery level in relationship to PHEVs

in a local area, the incentive necessary to discharge, and the viability of PHEV swap

stations under many conditions.
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OPTIMAL POLICIES FOR THE MANAGEMENT OF A

PLUG-IN HYBRID ELECTRIC VEHICLE SWAP STATION

I. Introduction

Optimizing operations at plug-in hybrid electric vehicle (PHEV) battery swap

stations is internally motivated by the movement to make transportation cleaner and

more efficient. The U.S. Energy Secretary, Ernest Moniz announced a $50 million

budget in January 2014 for research of vehicle technologies which will also aid the

initiative launched in March 2012 to make plug-in electric vehicles more convenient

and affordable over the next 10 years [1]. This research initiative is approached

by considering the optimal management of PHEV battery swap stations. A PHEV

battery swap station allows the PHEV owner to exchange their depleted battery for a

fully charged one. By implementing swap stations, not only are PHEV owners offered

the convenience to swap their battery, but there is the opportunity to control battery

charging and reduce the negative effect of increased demand for electricity on the

power grid [2][3] and reduce the difference between high-peak and low-peak energy

prices [4].

The concept of battery swap stations for PHEVs was initially developed by the

Israeli company Better Place, which financially collapsed in May 2013 [5]. Despite

Better Place’s collapse, it is still of great interest to examine such swap stations as the

manufacturing of PHEVs is on the rise and the motivation to switch from gasoline to

battery power has not been diminished. According to the Department of Energy [1],

nearly 100,000 plug-in electric vehicles were purchased by Americans in 2013, which

is almost twice as many as in 2012.
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One of the leading electric car manufacturers, Tesla, first gained worldwide atten-

tion when it released the first ever mass produced electric powered sports car in 2010

[6]. The Tesla Model S (sedan) is the current model available for purchase with two

battery options and is marked at $71,070 for the 60 kWh battery option, $81,070 for

the 85 kWh battery option, and $94,570 for the 85 kWh performance model. The

Model X (crossover) has recently been unveiled and is currently available for reser-

vation with delivery expected in Fall 2015 [7]. A third model is said to be released

in 2017 at a cost of $35,000 by the Tesla founder and CEO, Elon Musk [8]. It will

be called the Model 3 and will be a direct rival of the current BMW 3 Series electric

car. The rolling out of electric vehicles to the market is also occurring for many

other vehicle manufacturers. Honda, BMW, Chevrolet, Ford, Nissan, Cadillac, Fiat,

Mercedes, Mitsubishi, SMART, Volkswagon, Kia, and Toyota all carry at least one

electric vehicle and can cost between $23,800 for the Mitsubishi i-MiEV to $137,000

for the 2014 BMW i8 [9].

In addition to being one of the leading electric car manufacturers, Tesla is also

the frontrunner when it comes to charging stations. There are currently 129 Tesla

supercharge stations in North America, 95 in Europe and 36 in Asia [10]. Electric car

owners can plug in their car at a supercharge station and receive 120 kW of charge in

just 30 minutes at no cost to the consumer. This provides 170 miles of travel for the

Model S 85 kWh battery option. While this is a great option for PHEV owners, it still

requires a wait time while the battery is charging and plug-ins may get congested as

the number of PHEVs purchased continues to increase. Battery swap stations provide

a fast and convenient way to drive away with a fully charged battery. Tesla presented

the idea of swap stations in June 2013, but they have not yet come to market [11].

Widely available battery swap stations will help the movement launched in March

2012 by the Department of Energy [1] to make plug-in electric vehicles more conve-

2



nient and affordable, as well as help control battery charging to avoid loss of power

and power quality which can be incurred when batteries are charged during high peak

demand for electricity [2]. An ancillary benefit of a swap station is the ability to coor-

dinate discharging back to the power grid through vehicle-to-grid (V2G) technology

[12]. When the charging and discharging of batteries is properly coordinated with

the power grid, load balancing can occur [13][14][15].

With the significant impact swap stations can have on the growing market for

battery powered vehicles, it is valuable to develop a model that optimizes the op-

erations at a swap station. As such, this thesis presents a model which considers

uncertainty of battery swap demand and nonstationary charging costs to gain re-

alistic results that are robust to the stochasticity of the system. The PHEV-Swap

Station Management Problem (PHEV-SSMP) is considered and a Markov decision

process model [16] is developed. Markov decision processes characterize problems

with discrete time sequential decision making under uncertainty and can be solved

using dynamic programming. They can be modeled using finite or infinite horizons.

Infinite-horizon models provide for the determination of a stationary optimal policy,

meaning that the optimal action is state dependent and not time dependent. Non-

stationary Markov decision processes relax the assumption that problem data does

not change with time and are in general unsolvable using infinite-horizon models due

to infinite data requirements [17]. A finite-horizon model is considered because the

problem data used in the PHEV-SSMP is highly variable with respect to time. The

nonstationary variable properties include mean demand for battery swaps, charging

price for batteries, and revenue from discharging batteries back to the power grid. In

a sequential decision making model, the state of the system is observed at a certain

point in time and an action is taken. The action results in an immediate reward to the

decision maker and the system transitions to a new state according to a probability
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distribution determined by the chosen action.

A Markov decision process contains the following five characteristics: (1) a set of

decision epochs or time periods, (2) a state space that is made up of a set of states

the system may be in at a given point in time, (3) a set of available actions given the

current state of the system, (4) a reward function which is dependent on the set of

states and actions, and (5) a transition probability function which is also dependent

on the states and actions. The application of Markov decision processes to inventory

control models is widely accepted and will provide a framework for the PHEV-SSMP

model.

The Markov decision process for the PHEV-SSMP is characterized by the follow-

ing: (1) decision epochs are a consistent time unit at which a swap station manager

needs to determine the number of batteries to charge or discharge, (2) the state of

the system is the total number of batteries that are fully charged, where the state of

any given battery is either fully charged or depleted, (3) the action space is defined

as one dimensional, where the decision maker chooses the total number of batteries

to charge or discharge, (4) the reward function is defined using the expected reward

criterion which is comprised of revenue from battery swaps, revenue from discharging

batteries back to the power grid, and cost from charging batteries, and (5) transition

probabilities are determined by customer demand for battery swaps (where demand

follows a discrete distribution), the current state, and the chosen action.

A policy consists of decision rules which indicate to the decision maker an action

to take in a given state at a given point in time. The objective in solving the Markov

decision problem (MDP) is to determine a policy that maximizes the expected total

reward criterion. It can be proven that when the demand for swaps follows a discrete

nonincreasing distribution, a monotone nonincreasing policy is optimal. The opti-

mal policy, specifically the optimal number of batteries to charge and discharge, for
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this finite-horizon model is found using the backward induction algorithm [16]. The

optimal policy is compared to two benchmark policies which are easy to implement

at the swap station. In the first benchmark policy, which is labeled the stationary

benchmark policy, the swap station maintains a single target inventory level of fully

charged batteries regardless of time of day and day of week. In the second benchmark

policy, which is labeled the dynamic benchmark policy, the swap station maintains

a distinct target inventory level for each time period (which captures time of day

and day of week information). Each target level is based on the number of batteries

at the swap station and the relationship between current and future charging costs.

The action for each policy is calculated by taking the difference between the current

state of full batteries and the target level. If the swap station has more fully charged

batteries than the desired level, they will discharge down to the target and if the swap

station has less fully charged batteries than the desired level, they will charge up to

the target.

Using realistic data, the optimal solution method and two benchmark policies are

computationally tested to gain insight regarding the optimal operations and policies

which should take place at a PHEV swap station. Two Latin hypercube designed

experiments are performed. The first experiment is conducted to gain overall infor-

mation for various parameter inputs for the swap station. Specifically, the incentive

which should be given by the power company is determined, and other statistically

significant factors are analyzed. The second experiment is conducted to gain insight

into what the controllable parameters should be set to at a swap station (e.g., num-

ber of batteries, swap price) in relationship to the number of PHEVs in a local area

and power prices. Further, the results of the second experiment indicate that the

dynamic benchmark policy outperforms the stationary benchmark policy, however

both exhibit the favorable characteristic of ease of implementation.

5



Main Contributions. The main contributions of this work are as follows:

(i) development of a Markov decision process model to determine the optimal num-

ber of batteries to charge and discharge at a PHEV swap station when factoring in

stochastic, nonstationary swap demand, nonstationary charging costs, and nonsta-

tionary discharging revenues, (ii) proving the existence of a nonincreasing monotone

optimal policy when demand is governed by a discrete nonincreasing distribution,

(iii) generation of two benchmark policies which are easy to implement by a swap

station manager, and (iv) analysis of the results from two designed experiments using

realistic data which provide policy insights for a swap station.

The remainder of this thesis is organized as follows. In Chapter II, relevant lit-

erature is reviewed in the area of PHEV swap stations, various uses of dynamic

programming for energy storage problems, and inventory control Markov Decision

Problems. In Chapter III, the PHEV-SSMP is formally defined as an inventory con-

trol MDP to include decision epochs, state space, action sets, reward function, and

transition probability function. It is theoretically proven that the PHEV-SSMP con-

tains a nonincreasing monotone structure in Chapter III which motivates the optimal

and two benchmark policy solution methods presented in Chapter IV. In Chapter V,

the proposed model and solution methods are computationally validated by conduct-

ing two designed experiments and the results are analyzed to arrive at policy insights.

Conclusions and opportunities for future study are provided in Chapter VI.
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II. Literature Review

Growing interest in electric powered vehicles has led to extensive research on the

topic in both industry and academia. Herein, relevant literature pertaining to the

PHEV swap station application and proposed solution approach is discussed. This

literature review found no research using an inventory control MDP to model the

operations of a PHEV swap station to decide the number of batteries to charge and

discharge when factoring in stochastic demand, nonstationary charging costs, and

nonstationary revenue from discharging back to the power grid.

The need to examine PHEVs and specifically PHEV swap stations is motivated

by a variety of studies. Idaho National Laboratory [18] analyzed the infrastructure

requirements for charging of PHEVs in residential settings as well as commercial

settings. The report explains that having charging infrastructure available allows the

vehicles to require reduced energy storage capability and thus reduces the overall

cost of purchasing the vehicles. Transportation system costs can also be reduced by

providing rich charging infrastructure rather than using larger batteries to compensate

for lesser infrastructure.

Clement-Nys et al. [2] address the issues caused by the increase in demand for large

amounts of electrical consumption due to PHEVs. Uncontrolled charging of these

batteries in residential areas and charging stations can lead to power losses, reduction

in power quality and reliability problems. They use two techniques to model efficient

power grid operations, quadratic and dynamic programming. The results from these

models indicated that through coordination, which avoids the charging of PHEV

batteries during periods of high peak electricity consumption, power quality can be

improved and the effects of charging PHEV batteries can be mitigated. Bingliang et

al. [3] study the impacts of various charging scenarios on China’s power system using

data from Shanghai’s daily load profile and Monte Carlo simulation. Results from

7



their study indicate that the level of charging and the increase of charging during high

peak hours has a significant effect on the load profile in Shanghai. Investments in

battery swapping stations is recommended to control the impact of charging plug-in

electric vehicles.

Several approaches have been taken to optimize operations at PHEV swap sta-

tions. Worley and Klabjan [19] propose a dynamic programming model to determine

the number of batteries for a swap station manager to purchase and the optimal

number of batteries to charge at a given point in time. The objective is to minimize

the total cost of charging batteries, the opportunity cost of charged batteries that

were not used to meet demand, and some penalty defined for unmet demand. The

authors do allow for backlogging for unmet past demand. Approximate solutions to

the model are obtained by fitting a piecewise linear function to the objective function.

The PHEV-SSMP is similar, but it does not look at battery purchasing decisions or

backlogging of demand. However, discharging batteries using vehicle to grid (V2G)

technology is considered, where this problem does incorporate discharging.

A deterministic integer programming model, considered by Nurre et al. [20], has

been used to determine the optimal number of batteries to charge and discharge at

a given time. The model presented in this research takes into account a cluster of

locations and seeks to optimize operations at multiple swap stations within close

proximity to one another such that profit is maximized. In addition to managing the

operations at the swap stations to maximize profitability, the authors also examine

the impact these policies have on the power grid and seek to minimize the negative

impact of wind energy in conjunction with the swap station operations on the power

generation curve.

Infrastructure planning of battery swapping has been modeled using robust op-

timization techniques by Mak et al. [21] for making optimal decisions under limited

8



and imprecise information. They consider two different objectives; the first focuses

on minimizing the expected building and operating costs of the system while the

second seeks to maximize a robust estimate of the probability of meeting a return-on-

investment target. The decision problem consist of two stages: (1) determining where

to locate swap stations with limited information regarding demand, and (2) stocking

sufficient number of batteries at each station once uncertain parameters such as de-

mand are observed. Realistic test data is set based on the San Francisco Bay Area

freeway network. Results of the two models are similar, suggesting that the two

objectives are correlated. Thus, the authors suggest using the retrun-on-investment

goal driven model for computational efficiency to produce good solutions for the cost

driven model. Finally, they examine how technological advances affect their model

and determine that faster recharging technology is critical for increasing profitability.

Tang et al. [22] construct an optimization model seeking to maximize annual profit

of electric vehicle battery swap stations that contain photovoltaic power generation.

The system they describe has various components that provide charging power in-

cluding a photovoltaic array which converts solar energy to direct current, and energy

storage batteries. These energy storage batteries help regulate and balance the load

on the power grid by storing excess generated power and discharging to the system

when the system has insufficient generated power.

The adequacy of battery swap stations is assessed by Zhang et al. [23], who ex-

amine the ability to have enough fully charged batteries to satisfy battery swapping

demands. This is done by analyzing the probability that the amount of fully charged

batteries is greater than or equal to the number of electric vehicles that have depleted

batteries in any 1 hour interval. They use Monte Carlo simulation over a 10 day

period to determine the expected number of electric vehicles that require a battery

swap per hour. The results for demand are compared to the current charging plan
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to determine the probability that demand does not exceed available supply, which

provides valuable insight for charging management and V2G operations.

Plug-in hybrid electric vehicles and PHEV swap stations have been examined in

various other contexts as well. Pan et al. [24] present a two-stage stochastic model for

locating swap stations with the main objectives being to meet customer demand and

reduce variability from renewable technologies on the power grid. The demand for

PHEV battery swaps is characterized as a discrete random variable in a transportation

network.

Eyer and Corey [4] discuss how increased use of PHEVs can help reduce the sig-

nificant price difference in electric energy between high peak (on-peak) and low peak

(off-peak) prices. At night, energy prices are low because energy use is low. Energy

prices are high when energy use is high, which is usually midday on weekdays. If

PHEV usage continues to increase, then there will be increased demand for electric-

ity during off-peak periods which will ultimately decrease the price difference and

help balance the load on the power grid.

The value of PHEV V2G services on the electricity market is estimated by Sioshansi

and Denholm [12], who use a unit commitment model. Vehicle to grid technology

allows PHEVs to act as energy storage devices thus reducing energy system oper-

ators reliance on generators. V2G services include charging during off-peak hours

of demand and discharging during high-peak hours of demand, which is commonly

referred to as arbitrage. This has the potential to be beneficial not only to the energy

system, but to the PHEV owner as well. By allowing their vehicles to be used as an

energy storage device, PHEV owners can earn revenue which will reduce the overall

lifetime ownership costs. Sioshansi and Denholm use historical data from the Texas

electric power system to analyze the benefit of incorporating V2G technology.

Energy storage problems generally involve balancing power from the grid and
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stochastic renewable energy sources such as wind or solar power to smooth energy fluc-

tuations. Energy storage problems are being solved using dynamic programming, ap-

proximate dynamic programming methods, and other approximation methods. This

is of interest since increased demand for electricity due to PHEVs has a direct impact

on energy storage and these problems have similar characteristics to the PHEV-SSMP.

A dynamic programming approach is considered by Sioshansi et al. [25] to approx-

imate the capacity value of energy storage devices. Capacity value is the metric used

to quantify a resource’s effect on system reliability and is used for resource adequacy

planning. Using a deterministic profit-maximization dynamic program they model

storage operations that contribute to the capacity of the system. Using historical

conventional generator, load, and price data to estimate the capacity value on a sin-

gle storage device, they show that capacity values are sensitive to energy prices with

variability up to 40%.

Salas and Powell [26] research the effectiveness of an approximate dynamic pro-

gramming (ADP) algorithm for stochastic control of multidimensional energy storage

problems. Their work primarily focuses on grid-level storage problems with a finite-

horizon. Stochastic elements of their model include wind energy supply, demand for

electricity and electricity prices. The ADP resulted in near optimal control policies

that were within 1.34% of the optimal solution for a variety of stochastic test problems

and within 0.08% for various deterministic test problems.

Several approximate policy iteration methods are examined by Scott et al. [27].

They use the least-squares Bellman error minimization and also discuss direct policy

search as an alternative method for approximating complex stochastic systems. Their

approximate dynamic programming strategies are used for approximating the value

function of a class of energy storage problems that require balancing power from the

grid and renewable energy sources. Benchmark problems were used to test the perfor-

11



mance of the algorithms presented in this work. Bellman error minimization methods

provided optimal solutions within 60-80% of the optimal solution while direct policy

search results averaged within 90% of the optimal solution. The authors conclude

that there are advantages to using direct policy search but recognize limitations for

time-dependent applications.

An inventory control MDP is used for the PHEV-SSMP, but they also have a wide

variety of other applications. Examples of how inventory systems can be modeled as

MDPs are examined to gain insight into various applications. Many authors explore

whether or not the optimal policy of their system contains structure, which can be

valuable due to ease of implementation and the ability to use algorithms with faster

computation time. Structured policies could be monotonic or the commonly used

(σ,
∑

) policy. The curse of dimensionality is often mentioned with MDPs and con-

ventional solution methods (e.g., value iteration, policy iteration), thus it is common

to see many of these problems being solved using heuristics and newly developed

algorithms to approximate optimal solutions.

Inventory control MDPs have been used to model a wide variety of application

areas, with the depth of the literature focusing on supply chains. Giannoccaro and

Pontrandolfo [28] model a supply chain management problem, which deals with fac-

tors such as suppliers, manufacturers, and distributors. Zhang and Cooper [29] model

simultaneous seat-inventory control of multiple flights as a customer-choice MDP that

specifically looks at how inventory levels effect the distribution of demand. Yin et al.

[30] model an inventory control policy for finished products for a large paper man-

ufacturer with stochastic demand. Lewis [31] examines an inventory control model

with risk to supply chain disruptions by looking at an example of an international

supply chain with the risk of border closures and congestion. ElHafsi [32] examines

an inventory allocation model for an assemble-to-order system with multiple demand
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classes as a MDP.

Determining if a problem contains structure can provide valuable insight into a

problem. Puterman [16] emphasizes the benefits of optimal policies that contain

structure such as monotonicity. These structured policies are significant because

of their appeal to decision makers, ease of implementation, and faster computation

time. One commonly used structured policy for inventory control is the (σ,
∑

) policy

which indicates to order up to a set value
∑

once inventory falls below a set value

σ. The concept of the (σ,
∑

) was first presented by Scarf [33], who denotes it (s, S).

ElHafsi [32] determines the structure of their inventory allocation model using a direct

application of value iteration [16], rather than determining an optimal solution due

to the complex nature of their problem. Lewis [31] also uses value iteration to find

an optimal order-up-to level for the international supply chain model.

In the case where structure is not determined, solution methods must be explored

for solving large scale MDPs. Giannoccaro and Pontrandolfo [28] use a reinforcement

learning (RL) algorithm and average reward criteria to address some of the major

issues in supply chain management, specifically focusing on an inventory ordering

policy to maximize performance of the supply chain. When tested on the supply

chain management problem, the proposed approach proved to be effective and robust

enough to deal with changing demand. Das et al. [34] also propose a RL approach

in conjunction with a Semi-Markov average reward technique to solve large scale

MDPs. Their algorithm uses RL to solve Semi-MDPs using average expected reward

criteria. Semi-MDPs are modeled from sequential decision making problems that have

probability structures that are not solely characterized by Markov chains. Using RL

has an advantage over the traditional methods of solving MDPs as you do not need

to compute probability matrices and reward vectors, but instead use discrete event

simulation to build a model. Results from the Semi-Markov average reward technique
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algorithm developed by Das et al. [34] was tested on a small scale inventory control

model and a larger scaled one which resulted in fast and accurate results. Das et al.

[34] use discrete event simulation to build their model due to probability matrices

and reward functions being difficult to obtain for large scale MDPs.

Simulation techniques are widely used, especially for larger problems. Zhang and

Cooper [29] use simulation techniques to solve the stochastic optimization problem

where the demand distribution of customer seat choices is dependent on the state of

the system. The highly complex model makes the exact solution very difficult to find,

thus the authors derive upper and lower bounds for the value function using simulation

techniques and heuristics. Chang et al. [35] suggest using simulation in future research

with their adaptive sampling algorithm, which approximates the optimal value of a

finite-horizon MDP.

The PHEV-SSMP is solved using the backward induction algorithm [16]. This

algorithm finds the optimal policy, or specifically the optimal number of batteries

to charge and discharge at each decision epoch which maximizes the expected total

reward. Structural properties of the system are examined and it is determined that

a nonincreasing monotonic structure is present.
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III. Problem Statement

The PHEV-SSMP is solved by determining the optimal number of batteries to

charge and discharge over time. This problem is modeled as a Markov decision prob-

lem (MDP), with stochastic, nonstationary demand for battery swaps, nonstationary

charging costs, and nonstationary revenue from discharging. A finite-horizon, single

product inventory control model is considered because the problem data is highly

variable with respect to time. Nonstationary Markov decision processes relax the as-

sumption that problem data does not change with time and are in general unsolvable

using infinite-horizon models due to infinite data requirements [17]. The nonsta-

tionary variable properties in the PHEV-SSMP include demand for battery swaps,

charging price for batteries, and revenue from discharging batteries back to the power

grid. Motivating the decision which comprises the optimal policy is the maximization

of profitability at a single swap station.

Within the MDP model the state space is defined as the total number of batteries

that are fully charged. The state of the batteries is modeled at a fundamental level

where each battery is either fully charged or depleted. A solution where charging and

discharging occur simultaneously can be equivalently represented as solely charging or

solely discharging when the discharging revenue is less than or equal to the charging

price. Thus, the system is modeled such that charging and discharging never occur

simultaneously. If the discharging revenue is greater than the charging price, the

simplifying assumption is made that the PHEV station solely charges or solely dis-

charges at any point in time. The swap station may discharge up to the minimum of

the total number of batteries that are fully charged and the total number of plug-ins

available. In this context, what is denoted a plug-in is the physical entity at a swap

station that connects a battery to the power grid thereby allowing it to draw from

the power grid (i.e., charge) or discharge using V2G. The total number of plug-ins
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Start of
period t

Number of
batteries fully

charged st

Charge a+t
batteries

Discharge a−t
batteries

Demand Dt occurs
in period t, satisfied

if fully charged
batteries available

Charged a+t
batteries available

Start of
period t+ 1

Number of
batteries fully
charged st+1

Figure 1. Diagram outlining the timing of events for the PHEV-SSMP MDP model.

or what is denoted charging capacity is assumed constant over time. Similarly, the

swap station may charge up to the total number of batteries that are in the depleted

state provided that the charging capacity is not exceeded. Thus, the total number of

batteries at the swap station is constant over time.

The system is modeled such that batteries charged at time t become full in time t+

1. Batteries that are discharged take one time period to deplete but are immediately

unavailable for exchange. Only fully charged batteries are available for exchange

or discharging. Furthermore, batteries that are fully charged are always swapped

if available when demand arrives. The cost to charge and revenue from discharging

batteries is realized during the time period in which the decision is made. Backlogging

of demand is not permitted as it is assumed customers will not wait at the station

if batteries are unavailable. The expected reward criterion captures revenue from

battery swaps, revenue from discharging batteries back to the power grid through

V2G technology, and cost to charge batteries at the swap station. The event timing

for the PHEV swap station is outlined in Figure 1.
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The MDP for the PHEV-SSMP is mathematically characterized using the follow-

ing notation:

1. The set of decision epochs1, T = {1, . . . , N − 1}, N <∞, indicates the discrete

time periods in which a decision is made. As previously stated, a finite time

horizon is considered due to nonstationary properties.

2. The state of the system at time t, st ∈ S = {0, 1, . . . ,M} indicates the total

number of batteries that are fully charged at decision epoch t, where M is

defined as the total number batteries at the swap station, thus M − st is the

number of depleted batteries at time t.

3. The action at time t, at ∈ Ast = {max(−st,−Φ), . . . , 0, . . . ,min(M−st,Φ)}, ∀st ∈

S indicates the total number of batteries to charge or discharge at time t, where

Φ is the charging capacity of the system. A negative action indicates the dis-

charging of batteries and a positive action indicates the charging of batteries.

For clarity in the model, the action space is further defined. Let

a+
t =


at if at ≥ 0,

0 otherwise

(1)

a−t =


|at| if at < 0,

0 otherwise

(2)

where a+
t is the number of batteries charged and a−t is the number of batteries

discharged at time t. An assumption of the model is that a+
t and a−t cannot

both be positive during any time interval t.

1Decision epoch and time period will be used interchangeably throughout this thesis.
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4. The immediate reward when action at is selected in state st at time t which

leads to a transition to state st+1 is the profitability of the system, given by

rt(st, at, st+1) = ρ(st + at − st+1)−Kt(a
+
t ) + Jt(a

−
t ) (3)

for t = 1, . . . , N − 1, where st + at − st+1 = min{Dt, st − a−t }, is the number

of batteries swapped at time t. Discrete random variable Dt represents the

demand for battery swaps at time t, st−a−t is the number of batteries available

for exchange, ρ is the revenue per battery swap, Kt is the charging cost per

battery at time t, and Jt is the revenue earned per battery discharged at time t.

Specification of Kt and Jt captures the impacts of the nonstationary price for

power over time. The terminal reward is calculated as potential swap revenue

from fully charged batteries, thus rN(sN) = ρsN .

5. The total number of batteries fully charged at decision epoch t + 1 is directly

impacted by the batteries charged, discharged, and exchanged during decision

epoch t by way of st+1 = st + at −min{Dt, st − a−t }. The probability of transi-

tioning to state j at time t + 1 from state st when action at is taken, denoted

pt(j|st, at), is defined by

pt(j|st, at) =


0 if j > st + at or j < a+

t

pst+at−j if a+
t < j ≤ st + at

qst+at−j if j = a+
t

(4)

where pj = P (Dt = j) and qu =
∑∞

j=u pj = P (Dt ≥ u). For further clarification,

st + at − j indicates the number of fully charged batteries that are swapped in

period t, and st + at indicates the number of fully charged batteries on hand at

the end of the period if none are swapped.
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• In the first conditional, state j exceeds the number of fully charged batter-

ies the swap station could possibly have on hand at the end of the period

or state j is less than the number of batteries the swap station chooses to

charge, which are not available for exchange until after demand is met in

that period. In both cases there is a zero transition probability.

• In the second conditional, state j is between the number of batteries the

swap station charges and the number of batteries that could possibly be

on hand at the end of the period. In this situation, the swap station has

enough fully charged batteries to meet demand, hence the probability of

transitioning to state j is calculated using the time dependent discrete

distribution of demand. It has already been established that j cannot fall

below the number of batteries charged in that period, thus the lower bound

on j is a+
t .

• The last conditional is where j = a+
t , meaning that demand for battery

swaps meets or exceeds the supply of fully charged batteries at the begin-

ning of the period. In this situation, the station swaps all batteries on hand

but acquires the charged batteries at the end of the period. The transition

probability in this case is calculated using the cumulative probability that

demand meets or exceeds the number of batteries available for swapping

in period t.

To aid the reader, the transition probability function is illustrated using a simple

example. Consider the case where there are 15 fully charged batteries (i.e., st = 15)

and the swap station charges 5 (i.e., at = a+
t = 5). If no batteries are swapped the

station will have a total of 20 batteries at the end of the period (i.e., st+1 = j =

st + at = 20). There is no possible way to have more than st + at = 20 batteries at

the end of the period, thus there is a zero transition probability to a state greater

19



than 20. At the beginning of the period there are st + a−t = 15 batteries available

for exchange, thus if all fully charged batteries are swapped, the station still acquires

the 5 batteries that were charged at the end of the period. Therefore, the transition

probability to a state less than a+
t = 5 is zero. When j = a+

t = 5, the 15 batteries

that were available at the beginning of the period must have been swapped since the

5 charged batteries are acquired at the end of the period. The transition probability

in this case is the probability that demand meets or exceeds st+at−j = 15 batteries,

which is captured in the third conditional. Consider the case when the station has

7 batteries at the end of the period (i.e., j = 7 which is between a+
t and st + at).

Since 5 batteries were charged, 2 are remaining from the inventory in the previous

period. Since the station started with 15 charged batteries, 13 of them must have

been swapped. Thus the transition probability to 7 batteries is the probability that

demand for battery swaps was equal to st + at − j = 13.

Having specified the transition probability function, pt(j|st, at), the expected im-

mediate reward function can be expressed in terms of the current state and action

only, which is more desirable for subsequent calculations.

rt(st, at) =
∑
st+1∈S

[
pt(st+1|st, at)

(
ρ(st + at − st+1)

)
−Kt(a

+
t ) + Jt(a

−
t )

]
. (5)

The decision rules are denoted dt(st), which indicate to the decision maker how

to select an action at ∈ Ast at a given decision epoch t ∈ T when in state st ∈ S.

Because the decision rules depend on the current state of the system and not the

entire history of states, Markovian decision rules [16] are considered. Furthermore,

the decision rules prescribe a single specific action and not a probability distribution

on the action set. Therefore the decision rules are deterministic. A policy π is a

sequence of decision rules (d1(s1), d2(s2), . . . , dN−1(sN−1)) that specify the decision

rule to be used at all decision epochs.
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The expected total reward of a policy π, when the initial state of the system is

s1, denoted υπN(s1) is given by

υπN(s1) = Eπs1

[
N−1∑
t=1

rt(st, at) + rN(sN)

]
. (6)

The objective is to determine the policy π∗ with the maximum expected total reward.

The optimal value function, u∗t (st), denotes the maximum over all policies of the

expected total reward from decision epoch t onward when the state at time t is st.

Optimality equations, or Bellman equations, that correspond to the optimal value

functions are used as a basis for determining the optimal policies. The optimality

equations are given by

ut(st) = max
at∈Ast

{
rt(st, at) +

∑
j∈S

pt(j|st, at)ut+1(j)

}
(7)

for t = 1, . . . , N − 1 and st ∈ S. For t = N , uN(sN) = rN(sN). It can be shown that

if ut(st) is a solution to Equation (7) then the following hold true:

1. u∗t (st) = ut(st) for all st ∈ S, t = 1, . . . , N, and

2. υ∗N(s1) = u1(s1) for all s1 ∈ S.

In other words, the optimality equations are indeed optimal and the solution to the

optimality equation at t = 1 gives the expected total reward for the entire time

horizon. Since S is finite and Ast is finite for each st ∈ S, there exists a deterministic

Markovian policy which is optimal [16].

3.1 Structural Properties

Determining if the optimal policy of a MDP contains structure, such as monotonic-

ity, is significant due to the ease of implementation, appeal to decision makers, and
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the ability for faster computation time [16]. When an optimal policy has a monotone

structure, it can be solved with specialized and more efficient algorithms. Thus, it is

advantageous to prove that the system contains a nonincreasing monotonic structure.

A policy π is said to be nonincreasing if for each t = 1, . . . , N − 1 and any pair

of states si, sj ∈ S with si < sj, it is true that dt(si) ≥ dt(sj). The existence of

an optimal nonincreasing monotone policy can be demonstrated using a series of five

properties regarding the reward function and the probability of moving to a higher

state [16]. Define

gt(k|st, at) =
∑

j∈{S|j≥k}

pt(j|st, at), t = 1, . . . , N − 1 (8)

as the probability of moving to state j ≥ k at decision epoch t + 1 when action

at is chosen in state st at decision epoch t. Let Ast = A′ for all st ∈ S, where

A′ = {∪st∈SAst} is the set of all possible actions independent of the state of the

system. Note that a function, f(x, y), is said to be subadditive [16] if for x ≥ x̃ ∈ X

and y ≥ ỹ ∈ Y ,

f(x, y) + f(x̃, ỹ) ≤ f(x, ỹ) + f(x̃, y). (9)

First, three lemmas are outlined that are utilized in proving that there exists a

nonincreasing monotone policy which is optimal.

Lemma 1 The function gt(k|st, at) =

st+at∑
j=max{a+

t +1,k}

pst+at−j +

[
∞∑

i=st+at−j

pi

]
j≥k
j=a+

t

. (10)
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Proof.

gt(k|st, at) =
∑

j∈{S|j≥k}

pt(j|st, at) (11)

=
∑
j≥k

a+
t <j≤st+at

pst+at−j +

[
qst+at−j

]
j≥k
j=a+

t

(12)

=
st+at∑

j=max{a+
t +1,k}

pst+at−j +

[
∞∑

i=st+at−j

pi

]
j≥k
j=a+

t

(13)

�

Lemma 2 The following two summations are equivalent

st+at∑
j=k

pst+at−j =
st+at−k∑
i=0

pi. (14)

Proof.

st+at∑
j=k

pst+at−j = pst+at−k + pst+at−(k+1) + . . .+ pst+at−(st+at) (15)

= pst+at−k + pst+at−(k+1) + . . .+ p0 =
st+at−k∑
i=0

pi (16)

�

Lemma 3 The following two summations are equivalent

st+at∑
j=a+

t +1

pst+at−j +
∞∑

i=st+at−a+
t

pi =
∞∑
i=0

pi. (17)
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Proof.

st+at∑
j=a+

t +1

pst+at−j+
∞∑

i=st+at−a+
t

pi (18)

= pst+at−(a+
t +1) + pst+at−(a+

t +2) + . . .+ pst+at−(st+at) +
∞∑

i=st−a−t

pi

(19)

= pst−a−t −1 + pst−a−t −2 + . . .+ p0 +
∞∑

i=st−a−t

pi (20)

=

st−a−t −1∑
i=0

pi +
∞∑

i=st−a−t

pi =
∞∑
i=0

pi (21)

�

Utilizing these lemmas, the existence of a nonincreasing monotone policy is proven,

which is outlined in Theorem 1.

Theorem 1 There exists optimal decision rules d∗t (st) for the PHEV-SSMP which

are nonincreasing in st for t = 1, . . . , N − 1 when demand Dt is governed by a non-

increasing discrete distribution.

Proof. The claim is shown by demonstrating that the PHEV-SSMP exhibits the

following 5 conditions [16].

1. rt(st, at) is nondecreasing in st for all at ∈ A′.

That rt(st, at) is nondecreasing in st for a fixed at means that for a fixed action

(i.e., number of batteries charged or discharged), the expected immediate reward

will be greater when the number of full batteries is greater. This coincides with

intuition as more batteries can be swapped or discharged when there are more

full batteries available thereby leading to more reward. Consider st ≥ s̃t, using

st + at− st+1 = min{Dt, st− a−t } for any value which Dt can assume. It can be
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shown that

rt(st, at) ≥ rt(s̃t, at). (22)

The expected immediate reward function can be expressed as

rt(st, at) =
∞∑
j=0

[
P (Dt = j)

(
ρmin{j, st − a−t }

)
−Kt(a

+
t ) + Jt(a

−
t )

]
. (23)

Therefore, it can be show that

rt(st, at) ≥ rt(s̃t, at)⇔ (24)

∞∑
j=0

[
P (Dt = j)

(
ρmin{j, st − a−t }

)
−Kt(a

+
t ) + Jt(a

−
t )

]

≥
∞∑
j=0

[
P (Dt = j)

(
ρmin{j, s̃t − a−t }

)
−Kt(a

+
t ) + Jt(a

−
t )

]
⇔ (25)

∞∑
j=0

[
P (Dt = j)

(
ρmin{j, st − a−t }

)]
≥

∞∑
j=0

[
P (Dt = j)

(
ρmin{j, s̃t − a−t }

)]
.

(26)

Therefore, since P (Dt = j)ρ is multiplied by both sides for all values of j, the

above can be reduced to

min{j, st − a−t } ≥ min{j, s̃t − a−t }, (27)

for all possible values of j. Using a proof by cases, the three possible cases

of demand Dt = j with respect to st − a−t and s̃t − a−t are considered: (a)

j ≤ s̃t − a−t , j ≤ st − a−t , (b) j ≥ s̃t − a−t , j ≤ st − a−t , and (c) j ≥ s̃t − a−t ,

j ≥ st−a−t . The case where j is greater than st−a−t and less than s̃t−a−t does
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not need to be considered because it is not possible since st ≥ s̃t. In each case,

Equation (27) is reduced to a valid statement.

(a) j ≤ s̃t − a−t , j ≤ st − a−t

min{j, st − a−t } ≥ min{j, s̃t − a−t } ⇔ j = j (28)

(b) j ≥ s̃t − a−t , j ≤ st − a−t

min{j, st − a−t } ≥ min{j, s̃t − a−t } ⇔ j ≥ s̃t − a−t (29)

(c) j ≥ s̃t − a−t , j ≥ st − a−t

min{j, st − a−t } ≥ min{j, s̃t − a−t } ⇔ st − a−t ≥ s̃t − a−t ⇔ st ≥ s̃t (30)

2. gt(k|st, at) is nondecreasing in st for all k ∈ S and at ∈ A′.

That gt(k|st, at) is nondecreasing in st for a fixed at and k means that the

probability that the number of full batteries in the next state is greater than

some threshold k is greater when the number of full batteries in the current

state is greater. Consider st ≥ s̃t, it can be shown that

gt(k|st, at) ≥ gt(k|s̃t, at)⇔ (31)∑
j∈{S|j≥k}

pt(j|st, at) ≥
∑

j∈{S|j≥k}

pt(j|s̃t, at)⇔ (32)

∑
j≥k

a+
t <j≤st+at

pst+at−j +

[
qst+at−j

]
j≥k
j=a+

t

≥

∑
j≥k

a+
t <j≤s̃t+at

ps̃t+at−j +

[
qs̃t+at−j

]
j≥k
j=a+

t

⇔ (33)
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st+at∑
j=max{a+

t +1,k}

pst+at−j +

[
∞∑

i=st+at−j

pi

]
j≥k
j=a+

t

≥

s̃t+at∑
j=max{a+

t +1,k}

ps̃t+at−j +

[
∞∑

i=s̃t+at−j

pi

]
j≥k
j=a+

t

. (34)

Using a proof by cases, all cases of k with respect to at are considered. For each

case, Equation (34) is reduced to a valid statement. Note that the second term

of both the left hand side and right hand side of Equation (34) is only included

when both j ≥ k and j = a+
t , which represents when demand meets or exceeds

supply.

(a) a+
t ≥ k ⇒ a+

t + 1 > k

The second term of each summation appears as both j ≥ k and j = a+
t

are satisfied. Using Lemma 3, Equation (35) is reduced to Equation (36).

st+at∑
j=a+

t +1

pst+at−j +
∞∑

i=st+at−a+
t

pi ≥
s̃t+at∑
j=a+

t +1

ps̃t+at−j +
∞∑

i=s̃t+at−a+
t

pi ⇔ (35)

∞∑
i=0

pi =
∞∑
i=0

pi (36)

(b) a+
t < k ⇒ a+

t + 1 ≥ k

The second term of each summation does not appear as j = a+ will never

be satisfied. Starting from Equation (34), Lemma 2 is utilized to arrive at

a known valid statement.

st+at∑
j=k

pst+at−j ≥
s̃t+at∑
j=k

ps̃t+at−j ⇔ (37)

st+at−k∑
i=0

pi ≥
s̃t+at−k∑
i=0

pi ⇔ (38)
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s̃t+at−k∑
i=0

pi +
st+at−k∑

i=s̃t+at−k+1

pi ≥
s̃t+at−k∑
i=0

pi ⇔ (39)

st+at−k∑
i=s̃t+at−k+1

pi ≥ 0 (40)

3. rt(st, at) is a subadditive function on S × A′.

The subadditivity of rt(st, at) implies that the incremental effect on the expected

total reward of charging less batteries (or discharging more batteries) is less

when the number of full batteries is greater. Consider at ≥ ãt and st ≥ s̃t,

using st + at − st+1 = min{Dt, st − a−t } for any value which Dt can assume. It

can be shown that

rt(st, at) + rt(s̃t, ãt) ≤ rt(st, ãt) + rt(s̃t, at)⇔ (41)

∞∑
j=0

[
P (Dt = j)

(
ρmin{j, st − a−t }

)
−Kt(a

+
t ) + Jt(a

−
t )

]

+
∞∑
j=0

[
P (Dt = j)

(
ρmin{j, s̃t − ã−t }

)
−Kt(ã

+
t ) + Jt(ã

−
t )

]

≤
∞∑
j=0

[
P (Dt = j)

(
ρmin{j, st − ã−t }

)
−Kt(ã

+
t ) + Jt(ã

−
t )

]

+
∞∑
j=0

[
P (Dt = j)

(
ρmin{j, s̃t − a−t }

)
−Kt(a

+
t ) + Jt(a

−
t )

]
⇔ (42)

∞∑
j=0

[
P (Dt = j)

(
ρmin{j, st − a−t }

)]
+
∞∑
j=0

[
P (Dt = j)

(
ρmin{j, s̃t − ã−t }

)]

≤
∞∑
j=0

[
P (Dt = j)

(
ρmin{j, st − ã−t }

)]
+
∞∑
j=0

[
P (Dt = j)

(
ρmin{j, s̃t − a−t }

)]
.

(43)

Therefore, since P (Dt = j)ρ is multiplied by all terms, the above can be reduced
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to

min{j, st − a−t }+ min{j, s̃t − ã−t } ≤ min{j, st − ã−t }+ min{j, s̃t − a−t }, (44)

for all values of j. Using a proof by cases, every relevant case of at and ãt, and

each scenario for demand Dt = j with respect to st−a−t , s̃t−ã−t , st−ã−t , s̃t−a−t
are considered. The case where ãt ≤ 0 and at ≥ 0 is excluded as this is

not possible from the definition of subadditivity that at ≥ ãt. For each case,

Equation (44) is reduced down to a valid statement.

(a) ãt ≥ 0, at ≥ 0 ⇒ ã−t = a−t = 0

min{j, st − a−t }+ min{j, s̃t − ã−t } ≤ min{j, st − ã−t }+ min{j, s̃t − a−t } ⇔

(45)

min{j, st}+ min{j, s̃t} = min{j, st}+ min{j, s̃t} (46)

(b) ãt ≤ 0, at ≥ 0 ⇒ ã−t ≥ 0, a−t = 0

min{j, st}+ min{j, s̃t − ã−t } ≤ min{j, st − ã−t }+ min{j, s̃t} (47)

Every possibility for demand j with respect to st, s̃t− ã−t , st− ã−t , and s̃t

is considered. Figure 2 is provided to aid the reader in visualizing the

six possible scenarios. The ranges i-vi in the diagram correspond to the

following scenarios i-vi.

i. j ≤ s̃t − ã−t ⇒ j ≤ s̃t, j ≤ st − ã−t , j ≤ st

min{j, st}+ min{j, s̃t − ã−t } ≤ min{j, st − ã−t }+ min{j, s̃t} ⇔ (48)
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Figure 2. Scenarios of demand with respect to inventory for case (b).

j + j ≤ j + j ⇔ 2j = 2j (49)

ii. j ≥ st ⇒ j ≥ st − ã−t , j ≥ s̃t, j ≥ s̃t − ã−t

min{j, st}+ min{j, s̃t − ã−t } ≤ min{j, st − ã−t }+ min{j, s̃t} ⇔ (50)

st + s̃t − ã−t = st − ã−t + s̃t (51)

iii. j ≥ s̃t, j ≤ st − ã−t ⇒ j ≥ s̃t − ã−t , j ≤ st

min{j, st}+ min{j, s̃t − ã−t } ≤ min{j, st − ã−t }+ min{j, s̃t} ⇔ (52)

j + s̃t − ã−t ≤ j + s̃t ⇔ ãt ≥ 0 (53)

iv. j ≤ s̃t, j ≤ st − ã−t , j ≥ s̃t − ã−t ⇒ j ≤ st

min{j, st}+ min{j, s̃t − ã−t } ≤ min{j, st − ã−t }+ min{j, s̃t} ⇔ (54)

j + s̃t − ã−t ≤ j + j ⇔ s̃t − ã−t ≤ j (55)

v. j ≥ s̃t, j ≥ st − ã−t , j ≤ st ⇒ j ≥ s̃t − ã−t

min{j, st}+ min{j, s̃t − ã−t } ≤ min{j, st − ã−t }+ min{j, s̃t} ⇔ (56)
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j + s̃t − ã−t ≤ st − ã−t + s̃t ⇔ j ≤ st (57)

vi. j ≤ s̃t, j ≥ st − ã−t ⇒ j ≥ s̃t − ã−t , j ≤ st

min{j, st}+ min{j, s̃t − ã−t } ≤ min{j, st − ã−t }+ min{j, s̃t} ⇔ (58)

j + s̃t − ã−t ≤ st − ã−t + j ⇔ s̃t ≤ st (59)

(c) ãt ≤ 0, at ≤ 0 ⇒ ã−t ≥ 0, a−t ≥ 0, ã−t ≥ a−t

Every possibility for demand j with respect to st−a−t , s̃t−ã−t , st−ã−t , s̃t−

a−t is considered. Figure 3 is provided to aid the reader in visualizing the

six possible scenarios. The ranges i-vi in the diagram correspond to the

following scenarios i-vi.

i

i

iv

iv

iii

vi

v

v

ii

ii

s̃t − ã−t
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Figure 3. Scenarios of demand with respect to inventory for case (c).

i. j ≤ s̃t − ã−t ⇒ j ≤ s̃t − a−t , j ≤ st − ã−t , j ≤ st − a−t

min{j, st − a−t }+ min{j, s̃t − ã−t }

≤ min{j, st − ã−t }+ min{j, s̃t − a−t } ⇔ (60)

j + j ≤ j + j ⇔ 2j = 2j (61)
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ii. j ≥ st − a−t ⇒ j ≥ s̃t − a−t , j ≥ st − ã−t , j ≥ s̃t − ã−t

min{j, st − a−t }+ min{j, s̃t − ã−t }

≤ min{j, st − ã−t }+ min{j, s̃t − a−t } ⇔ (62)

st − a−t + s̃t − ã−t = st − ã−t + s̃t − a−t (63)

iii. j ≥ s̃t − a−t , j ≤ st − ã−t ⇒ j ≥ s̃t − ã−t , j ≤ st − a−t

min{j, st − a−t }+ min{j, s̃t − ã−t }

≤ min{j, st − ã−t }+ min{j, s̃t − a−t } ⇔ (64)

j + s̃t − ã−t ≤ j + s̃t − a−t ⇔ ã−t ≥ a−t (65)

iv. j ≤ s̃t − a−t , j ≤ st − ã−t , j ≥ s̃t − ã−t ⇒ j ≤ st − a−t

min{j, st − a−t }+ min{j, s̃t − ã−t }

≤ min{j, st − ã−t }+ min{j, s̃t − a−t } ⇔ (66)

j + s̃t − ã−t ≤ j + j ⇔ s̃t − ã−t ≤ j (67)

v. j ≥ s̃t − a−t , j ≥ st − ã−t , j ≤ st − a−t ⇒ j ≥ s̃t − ã−t

min{j, st − a−t }+ min{j, s̃t − ã−t }

≤ min{j, st − ã−t }+ min{j, s̃t − a−t } ⇔ (68)

j + s̃t − ã−t ≤ st − ã−t + s̃t − a−t ⇔ j ≤ st − a−t (69)

vi. j ≤ s̃t − a−t , j ≥ st − ã−t ⇒ j ≥ s̃t − ã−t , j ≤ st − a−t

min{j, st − a−t }+ min{j, s̃t − ã−t }
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≤ min{j, st − ã−t }+ min{j, s̃t − a−t } ⇔ (70)

j + s̃t − ã−t ≤ st − ã−t + j ⇔ s̃t ≤ st (71)

4. gt(k|st, at) is a subadditive function on S × A′ for all k ∈ S.

The subadditivity of gt(k|st, at) implies that the incremental effect of charging

less batteries (or discharging more batteries) on the probability that the system

moves to a state of full batteries above some threshold k is less when the number

of full batteries is greater. Consider at ≥ ãt and st ≥ s̃t, it can be shown that

gt(k|st, at) + gt(k|s̃t, ãt) ≤ gt(k|st, ãt) + gt(k|s̃t, at)⇔ (72)

st+at∑
j=max{a+

t +1,k}

pst+at−j +

[
∞∑

i=st+at−j

pi

]
j≥k
j=a+

t

+
s̃t+ãt∑

j=max{ã+
t +1,k}

ps̃t+ãt−j +

[
∞∑

i=s̃t+ãt−j

pi

]
j≥k
j=ã+

t

≤
st+ãt∑

j=max{ã+
t +1,k}

pst+ãt−j +

[
∞∑

i=st+ãt−j

pi

]
j≥k
j=ã+

t

+
s̃t+at∑

j=max{a+
t +1,k}

ps̃t+at−j +

[
∞∑

i=s̃t+at−j

pi

]
j≥k
j=a+

t

. (73)

Using a proof by cases, every relevant case of k with respect to at and ãt is

considered. For each case, Equation (73) is reduced to a valid statement. The

function gt(k|st, at) is comprised of two terms. The first term calculates the

probability when demand never exceeds supply of batteries and the second

calculates the cumulative probability that demand equals or exceeds supply. It

is indicated in each case of the proof which of the terms are included in the

summation based on the relationship between k, at, and ãt.
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(a) ã+
t ≥ k ⇒ a+

t ≥ k, ã+
t + 1 > k, a+

t + 1 > k

For this case demand for battery swaps may exceed supply, therefore both

terms of gt(k|st, at) appear.

st+at∑
j=a+

t +1

pst+at−j +
∞∑

i=st+at−a+
t

pi +
s̃t+ãt∑
j=ã+

t +1

ps̃t+ãt−j +
∞∑

i=s̃t+ãt−ã+
t

pi

≤
st+ãt∑
j=ã+

t +1

pst+ãt−j +
∞∑

i=st+ãt−ã+
t

pi +
s̃t+at∑
j=a+

t +1

ps̃t+at−j +
∞∑

i=s̃t+at−a+
t

pi ⇔ (74)

∞∑
i=0

pi +
∞∑
i=0

pi ≤
∞∑
i=0

pi +
∞∑
i=0

pi ⇔ (75)

2
∞∑
i=0

pi = 2
∞∑
i=0

pi (76)

(b) ã+
t < k, a+

t ≥ k ⇒ ã+
t + 1 ≤ k, a+

t + 1 > k

For this case, because a+
t ≥ k, the second term of g(k|st, at) does appear

when action at is taken as demand can exceed supply. However, because

ã+
t < k, demand can never exceed supply when action ãt is taken.

st+at∑
j=a+

t +1

pst+at−j +
∞∑

i=st+at−a+
t

pi +
s̃t+ãt∑
j=k

ps̃t+ãt−j

≤
st+ãt∑
j=k

pst+ãt−j +
s̃t+at∑
j=a+

t +1

ps̃t+at−j +
∞∑

i=s̃t+at−a+
t

pi ⇔ (77)

∞∑
i=0

pi +
s̃t+ãt−k∑
i=0

pi ≤
st+ãt−k∑
i=0

pi +
∞∑
i=0

pi ⇔ (78)

s̃t+ãt−k∑
i=0

pi ≤
st+ãt−k∑
i=0

pi ⇔ (79)

s̃t+ãt−k∑
i=0

pi ≤
s̃t+ãt−k∑
i=0

pi +
st+ãt−k∑

i=s̃t+ãt−k+1

pi ⇔ (80)

0 ≤
st+ãt−k∑

i=s̃t+ãt−k+1

pi (81)
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(c) a+
t < k ⇒ ã+

t < k, ã+
t + 1 ≤ k, a+

t + 1 ≤ k

For this case, demand for battery swaps never exceeds supply therefore,

the second term of gt(k|st, at) does not appear when either action at or

action ãt are taken.

st+at∑
j=k

pst+at−j +
s̃t+ãt∑
j=k

ps̃t+ãt−j ≤
st+ãt∑
j=k

pst+ãt−j +
s̃t+at∑
j=k

ps̃t+at−j ⇔ (82)

st+at−k∑
i=0

pi +
s̃t+ãt−k∑
i=0

pi ≤
st+ãt−k∑
i=0

pi +
s̃t+at−k∑
i=0

pi ⇔ (83)

s̃t+at−k∑
i=0

pi +
st+at−k∑

i=s̃t+at−k+1

pi +
s̃t+ãt−k∑
i=0

pi

≤
s̃t+ãt−k∑
i=0

pi +
st+ãt−k∑

i=s̃t+ãt−k+1

pi +
s̃t+at−k∑
i=0

pi ⇔

(84)

st+at−k∑
i=s̃t+at−k+1

pi ≤
st+ãt−k∑

i=s̃t+ãt−k+1

pi. (85)

In Equation (85) the number of terms on each side are exactly the same,

however because at ≥ ãt the start of the summation is greater on the

left hand side. Therefore, Equation (85) holds when pj = P (Dt = j) is

governed by a nonincreasing discrete distribution.

5. rN(sN) is nondecreasing in sN .

Consider sN ≥ s̃N , it can be shown that rN(sN) ≥ rN(s̃N). This expression is

reduced to a known valid statement.

rN(sN) ≥ rN(s̃N)⇔ ρsN ≥ ρs̃N ⇔ sN ≥ s̃N (86)

�
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Consider two possibilities for the state (i.e., number of full batteries) at a swap

station st ≥ s̃t. This theorem states that there exists an optimal decision rule where

the swap station will never charge less (or discharge more) batteries in state s̃t as

compared to st. Utilizing this result, exact solution methods and two benchmark

solution methods are outlined.
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IV. Methodology

The objective in solving this Markov decision problem (MDP) is to determine

a policy that maximizes the expected total reward criterion expressed in Equation

(6). The set of states, S, is finite and the action set, Ast , is finite for each st ∈ S.

Therefore there exists a deterministic Markov policy which is optimal. An optimal

policy for this finite-horizon model is found using the backward induction algorithm

[16]. This dynamic programming algorithm finds the optimal policy, or specifically

the optimal number of batteries to charge and discharge at each decision epoch which

maximizes the expected total reward. The backward induction algorithm finds sets

A∗st,t which contain all actions in Ast which attain the maximum for the optimality

equations (7). The algorithm also evaluates the policy and computes the expected

total reward from each period to the end of the decision making horizon.

There exists an optimal policy that contains a nonincreasing monotonic structure

when demand is governed by a discrete nonincreasing distribution, thus the mono-

tone backward induction algorithm [16] is also used to find an optimal policy, which

is outlined in Algorithm 1. The nonincreasing monotone backward induction algo-

rithm modifies the original algorithm by redefining the action set at each iteration

of st to be limited by the optimal decision rule of st − 1 for each t ∈ T . For ex-

ample, if the optimal decision rule at st = 10 is to charge 20 batteries, then the

action space for st = 11 will now be A11 = {max(−11,−Φ), . . . , 0, . . . ,min(20,Φ)}

instead of A11 = {max(−11,−Φ), . . . , 0, . . . ,min(M − 11,Φ)}. The modifications to

the algorithm will result in an optimal policy when demand is governed by a discrete

nonincreasing distribution; note however, that there may be alternative optima that

are not monotone.

When there are |S| states, |A′| actions in each state where A′ = {∪st∈SAst}, and

N time periods, the backward induction algorithm requires (N − 1)|A′||S|2 multipli-
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Algorithm 1 Nonincreasing Monotone Backward Induction [16]

1: Set t = N and uN(sN) = rN(sN) for all sN ∈ S
2: while t > 1 do
3: Set t = t− 1, set st = 0 and set A′st = A′0 = A′

4: while st ≤M do
5: Compute u∗t (st) by

u∗t (st) = max
at∈A′st

{
rt(st, at) +

∑
j∈S

pt(j|st, at)u∗t+1(j)

}

6: Set action that results in u∗t (st)

A∗st,t = arg max
at∈A′st

{
rt(st, at) +

∑
j∈S

pt(j|st, at)u∗t+1(j)

}

7: if st < M then
8: Define action space for st + 1 by

A′st+1 =
{
a ∈ A′st : a ≤ min{a′ ∈ A∗st,t}

}
9: end if

10: Set st = st + 1
11: end while
12: end while
13: Calculate expected total reward for entire horizon, υ∗N(s1) = u∗1(s1)

cations to determine the optimal policy, which is a considerable improvement from

complete enumeration of all possible solutions, which takes (|A′||S|)(N−1)(N − 1)|S|2

multiplications. In the worst case scenario, the monotone backward induction algo-

rithm’s computational effort equals that of the backward induction, however when the

policy is nonincreasing the action sets decrease in size with increasing st and reduce

the number of actions that need to be evaluated [16].
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4.1 Benchmark Policies

Two benchmark policies are considered such that the swap station charges up

to or discharges down to a set target level ζt, at each decision epoch t. The first

benchmark policy is a stationary benchmark policy which picks a set target level ζ

and sets ζt = ζ for all time periods t. The second is a dynamic benchmark policy and

utilizes a distinct ζt for each time period t. Utilizing each target level, the policy can

be determined by calculating the action for each state and time period with a simple

calculation. Thus, this policy can be easily implemented by a swap station manager.

If the state st is less than or equal to the target level ζt, the swap station does not

have as many fully charged batteries as desired, thus they will charge or do nothing.

The most that can be charged at any point in time, denoted C, is given by

C = min{M − st,Φ}. (87)

If st is greater than ζt the swap station has more fully charged batteries than desired,

thus they will discharge. The most that can be discharged at any point in time (i.e.,

the most negative action), denoted D, is given by

D = max{−st,−Φ}. (88)

The decision rule dt(st) is given by the following.

dt(st) =


min{ζt − st, C} if st ≤ ζt

max{ζt − st, D} if st > ζt

(89)

For the first benchmark policy, a stationary target level ζt = ζ is derived, where

ζ is calculated as a percentage of the number of batteries M using some constant
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C . Equation (90) calculates ζ using a traditional rounding function. In the second

benchmark policy, dynamic target levels ζt are derived at each decision epoch as a

rounded function of the number of batteries M and charging costs Kt using Equation

(91) for constants C`,Cu where Cu > C`.

ζ = bCM + 0.5c (90)

ζt =


bC`M + 0.5c if Kt > Kt+1

bCuM + 0.5c if Kt ≤ Kt+1

∀t = 1, . . . , N − 1 (91)

These policies are validated in Chapter V as usable for real time decision making

activities due to their speed of calculation and accuracy.
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V. Computational Tests

In this chapter, realistic data is used to computationally test the PHEV-SSMP

on a variety of different scenarios. From the optimal policies, insights that would

be beneficial to a swap station manager are deduced. Two Latin hypercube designed

experiments are also used to gain insights with a focus on the expected total profit and

percentage of demand that is met when the optimal policy is implemented. Further,

the accuracy and speed of the two benchmark policies is compared to the optimal

policy and optimal solution method.

The time horizon examined is a full week in one hour increments, thus the time

horizon is N = (24)(7) + 1 = 169 and the number of decision epochs is N − 1 = 168.

The first decision is made on Monday at 0000, the second on Monday at 0100 until the

last decision is made on Sunday at 2300. Historical hourly charging cost data from

2013 in the Capital Region, New York is utilized, which is obtained from National

Grid [36]. One week from each season is used in this analysis due to the varying

climate and drastic variation in prices throughout the year. January 21-27 is used for

Winter, April 15-21 for Spring, July 15-21 for Summer, and September 23-29 for Fall.

Note that the sum of power prices over every hour of the week is at the maximum

for January 21-27 and at a minimum for September 23-29 for 2013. The charging

cost per kWh at each time t is multiplied by 60 to calculate the cost to charge one

battery Kt, which is consistent with the Tesla Model S 60 kWh battery option [37]

and can be completed in an hour with level 2 or 3 charging [18]. The charging cost

per battery per hour for the four weeks of interest can be seen in Figure 4. For

these computational tests, the discharge revenue Jt, is set equal to a percentage of

the charging cost, Jt = αKt using α between 0.75 and 1.25. The α parameter will

give insight into the incentives needed to be placed on the swap station to encourage

discharging at favorable points in time.
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Figure 4. Charging cost KtKtKt per battery per hour in the Capital Region, NY.

A similar methodology is considered to derive the distribution for swap demand

at each hour as Nurre et al. [20]. The authors assume that the behaviors for arrivals

at a swap station will mimic the currently observed behaviors at a gas station. As

such, they calculate the percentage of people who will frequent a gas station for each

hour of a day and day of a week based on historical data at Chevron gas stations

[38], assuming a customer visits a gas station once per week. This percentage is

utilized to calculate the mean arrival rate of customers X̄t, for each decision epoch

t. Specifically, the PHEV-SSMP considers an area with γ PHEV users and sets X̄t

equal to the product of γ and the percentage of customers visiting the station at time

t from Nurre et al. [20].

Two distributions for modeling swap demand Dt are considered, geometric and

Poisson. When swap demand Dt follows a geometric distribution, parameter Pt is set

to 1
X̄t+1

. When swap demand Dt follows a Poisson distribution, parameter λt is set

to X̄t. Note that the geometric distribution is a nonincreasing discrete distribution,

therefore a monotonic nonincreasing policy is optimal. The mean arrival rate of

customers X̄t = λt for each hour of each day in a location with γ = 3, 000 PHEVs

can be seen in Figure 5. The arrival rate of customers is assumed the same for each

42



week of the year.
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Figure 5. Mean arrival rate of customers λtλtλt in a location with 3,000 PHEVs by time
of day and day of the week.

To computationally test the PHEV-SMMP, two designed experiments are con-

ducted. The first designed experiment is used to gain general insights when a wide

range of inputs are considered. The second designed experiment is conducted with

more targeted values based on the results of the first experiment. With this second

experiment, values for the controllable parameters at a swap station are able to be

determined. With both, the expected total reward, percentage of met demand, and

policies are utilized to infer valuable policy insights.

For the first designed experiment the expected total reward is used as the re-

sponse variable. This is found using the monotone nonincreasing backward induction

algorithm [16] when demand follows the geometric distribution. When demand fol-

lows a time dependent Poisson process, two policies with corresponding expected

total rewards are found: the optimal policy is found using the backward induction

algorithm, and a heuristic policy is found using the monotone backward induction

algorithm. Note that the monotone policy is not always optimal, however empirically

it has been verified to be optimal in almost all cases.
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A 50-scenario Latin hypercube designed experiment is preformed, which is a widely

used design for deterministic computer simulation models [39]. This space filling

design spreads the design points nearly uniformly to better characterize the response

surface in the region of experimentation. Because four separate weeks for charging

cost data is considered, Kt is a categorical factor with four levels representing the

four weeks extracted from the year. The 50-scenario design is conducted for each of

the four seasons and each of the two demand distributions, resulting in a total of 400

scenarios. Factors that are used in the design include the total number of batteries

M , the charging capacity Φ, the total number of PHEVs in the local area γ, the

revenue per battery swap ρ, and the percentage of revenue earned from discharging

with respect to the charging cost α. Using JMP11Pro software, a 50-scenario design

is generated with various levels of each factor ranging between two values. The high

and low levels used for this experiment can be seen in Table 1. The charging costs

for the four weeks of interest, KW
t , K

Sp
t , KSu

t , and KF
t , are representative of Winter,

Spring, Summer, and Fall, respectively. The low value for the swap revenue ρ, is set

less than the minimum charging cost over the four weeks and the high value for ρ is

set greater than the maximum charging cost.

Table 1. Factor levels used for the first Latin hypercube designed experiment.

Factor Low High
Total Number of Batteries M 50 200
Charging Capacity Φ b0.25Mc M
Swap Revenue ($) ρ 1 20
Percent Discharge Revenue (%Kt) α 0.75 1.25
PHEVs in the Local Area γ 1, 000 6, 000

When considering the time dependent Poisson process for demand, the monotone

policy was optimal in all but 22 scenarios. Of these 22 scenarios, the largest percent-

age gap in expected total reward when compared to optimal was 0.77%. Therefore,
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while the monotone policy is not always optimal when demand does not follow a non-

increasing distribution, it is empirically observed to provide a good approximation.

Further, very similar optimal policies are seen when using the Poisson and geometric

distributions to model demand. Only 41 scenarios resulted in a different expected to-

tal reward with the largest gap being 2.7%. Discharging is often favored when demand

follows a Poisson process, however discharging does occur when demand is governed

by a geometric distribution. Due to the similarities seen, the results presented herein

apply to both distributions unless otherwise stated.

Results from the designed experiment indicate that all factors have a significant

effect on the expected total reward at a 95% confidence level, except for the charging

costs Kt. This indicates that even though there is a drastic variation in seasonal

charging prices, it does not affect the swap station’s profit. As expected, the swap

revenue ρ, has the greatest impact on the expected total reward. Thus, the most

effective way to increase the expected total reward would be to increase the swap

cost, however this is based on the assumption that demand for swaps is independent

of the swap cost which is unrealistic. Future work should consider the sensitivity of

customers to the price for swapping as utilizing a charging station can occur instead

of swapping. Next, the significant interaction terms with M are examined: MΦ, Mρ,

and Mα. The interaction plots produced by JMP11Pro Software for the second order

terms can be seen in Figure 6.

When M is at the low level, the charging capacity Φ does not have a significant

effect on the expected total reward and the revenue earned from discharging, α,

has only a small effect. While increasing the swap revenue ρ significantly increases

the expected total reward when M is low, it has a greater effect when M is high.

Furthermore, when M is high, Φ and α at the high level result in a significantly

higher expected total reward than Φ and α at the low level. From this examination

45



Figure 6. Interaction plots of significant factors from the first designed experiment.

the following policy insights are deduced. Having a correct number of batteries M

is an integral part of optimally managing the swap station. When M is too low

for the demand, even higher charging capacity and greater percentage earned from

discharging cannot make up for the lack of revenue earned from not being able to

exchange due to too few batteries. Further, if it is desirable for the swap station

to serve a dual purpose by both satisfying swap demand and aiding the power grid

via discharging, having a sufficient number of batteries M is essential. The second

designed experiment looks at what M should be with respect to the number of PHEVs

in the local area γ to serve this dual purpose.

Upon analysis of the remaining interactions, the interaction between Φ and α was

the only one found to be insightful. When α is high, a higher charging capacity

Φ results in a greater expected total reward. However, when α is low the charging

capacity does not have a significant effect on the expected total reward. This is

predominantly driven by the lack of discharging when α is low thereby causing less

need for charging capacity Φ. Upon further inspection of the policies for the different

levels of Φ and α there were some interesting trends in relationship to ρ. When α < 1,
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discharging will only be desirable when swapping is not desirable (i.e., ρ is below some

threshold). However, when ρ is above this same threshold, discharging never occurs

when α < 1 even when Φ is high. For this experiment, the thresholds for ρ were $3.71,

$2.16, $2.16, and $1.78 for Winter, Spring, Summer, and Fall, respectively. These all

fall below the mean charging costs which are $9.58, $2.86, $4.80, and $2.17. Further,

an oscillation between charging and discharging occurs when α > 1 regardless of the

charging capacity Φ or the swap revenue ρ, and little demand for swaps is met. These

trends should be particularly informative to the power company. Even if the swap

station has sufficient charging infrastructure they are not incentivized to discharge

if they are earning a discounted rate, as long as ρ is set appropriately. Further, a

negative behavior occurs possibly furthering the fluctuations seen in the load on the

power grid when the incentive to discharge is too high, regardless of the charging

infrastructure at the swap station.

The analysis is proceeded by further examining the optimal policies for different

scenarios. Figure 7 illustrates the optimal policies for a scenario with M = 50, Φ =

M, ρ = 15, γ = 3, 000, and Kt = KSu
t differentiated by three values for α. For a

typical Wednesday, Figures 7a and 7b show the optimal policies in 4 hour increments

and Figure 7c shows two consecutive hours. It can be visually seen that the swap

station never discharges when α = 0.75 as the policy never drops below zero in the

grayed area of the Figure. When α = 1, discharging does occur when it appears that

the number of full batteries at the swap station is above some threshold (between

25 and 35 full batteries). When α = 1.25, the optimal policy alternates charging

and discharging every hour when the swap station has between about 10 and 45 fully

charged batteries.

Taking a closer look at this phenomenon, the impact of α on the amount of swap

demand that is met at a swap station is examined. Figure 8 depicts the ceiling of
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the expected demand dλte when demand follows a Poisson process as compared to

the number of batteries the swap station is able to swap when the optimal policy

is implemented and the initial state is M . When α = 1.25, the oscillating behavior

between charging and discharging that was seen in Figure 7c prevents the satisfaction

of most demand. Further, even when discharging never occurs (α = 0.75) much

demand is left unsatisfied. The next designed experiment is performed to identify the

relationship between the total number of batteries M and the demand in a local area

to ensure some level of demand is met.
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Figure 7. Optimal policy by percentage of the charge cost earned for discharging, α.α.α.
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(c) α = 1.25α = 1.25α = 1.25

Figure 8. Expected swap demand and met demand by percentage of the charge cost
earned for discharging, α.α.α.

From this analysis into α it is decided that to maintain the dual purpose of the

swap station of meeting swap demand and still exhibiting some favorable V2G dis-

charging behavior, α = 1 is best. With α = 1 the money the swap station earns
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from discharging is exactly the cost for charging a battery. Thus, further analysis will

focus on the scenarios when α = 1 to arrive at policy insights.

Next, the state of the system is illustrated when operating using the optimal policy,

or the number of fully charged batteries the swap station has on hand throughout a

typical week and day for a swap station withM = 50, Φ = M, ρ = 5, γ = 3, 000, α =

1, and Kt = KF
t . To do this three sample paths for observed demand at the swap

station are generated. In the first sample path, the demand observed at the swap

station is exactly the mean arrival dλte when demand follows a Poisson process. Monte

Carlo simulation is used to generate two more sample paths for observed demand at

each decision epoch. A Meresenne Twister pseudorandom number generator is used

to generate random numbers Rt, between 0 and 1 for each decision epoch and then

the battery swap demand is calculated using the cumulative probability distribution

of demand. The probability that demand is less than or equal to X̂t, P (Dt ≤ X̂t) is

set equal to Rt, where Dt ∼ Poisson(λt). The state at the next decision epoch t+ 1

is calculated using the optimal decision rule d∗t (st) for the current state st, and the

observed demand, denoted X̂t, by way of

st+1 = st + d∗t (st)−min
{
X̂t, st − |min{d∗t (st), 0}|

}
. (92)

Assuming the swap station starts with all full batteries, an entire week is examined

and then a specific day in more detail. The state of the system at each decision epoch

and the corresponding optimal action can be seen in Figure 9 for an entire week.

From this figure, note that the assumption that the swap station starts with all full

batteries at the start of a time horizon is not a simplifying assumption as the number

of full batteries naturally increases at the start of each day. Also note that the state

and action taken is relatively consistent for each of the three observed sample paths

of demand. This is a nice result as it appears the action taken in relation to the state
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balances. Similar results for Wednesday can be seen in Figure 10.
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Figure 9. State and action over a week time period for three simulated observed
demands.
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Figure 10. State and action over one Wednesday for three simulated sample paths.

For Wednesday, the number of swaps occurring in relation to each sample path of

demand is examined further. Figure 11 shows this relationship for the first sample

path of observed demand which equals the expected demand and the two Monte Carlo

simulations. The number of batteries swapped are consistent even as the sample path

of demand is different. Further, it can again be seen that for this particular scenario

there is not a sufficient number of batteries at the swap station to consistently meet
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Figure 11. Demand throughout a typical Wednesday.

demand. This is compounded with the fact that unmet demand is not penalized in

this model.

Based on the insights drawn from the first experiment, the next experiment is

performed to gather insight into what the swap station should use for its controllable

parameters when α = 1 and one season is considered. Specifically, the aim is to

determine the number of batteries M , charging capacity Φ, and swap cost ρ in relation

to the non-controllable parameters. With this, the focus transitions from the expected

total reward to the amount of demand that is met. A second Latin hypercube designed

experiment with 40 scenarios is performed. The response variable for this experiment

is the percentage of demand being met over the entire week when the optimal policy

is implemented, the initial state of the system is M fully charged batteries, and

the demand is set to dλte. For this experiment, only α = 1 is considered and for

simplification only look at charging costs for the week of April 15-21 (Spring). The

seasonal charging cost Kt is not statistically significant with respect to the expected

total reward and the percentage of demand that is met. Thus, the design consists

of four factors. Using JMP11Pro software, a 40 scenario design is generated with

various levels of each factor ranging between two values. The high and low levels

used for this experiment are shown in Table 2. This experiment is again run when

demand follows a geometric distribution and Poisson process where both a monotone

policy and optimal policy are found when demand follows a Poisson process. For
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these 40 scenarios the monotone policy is always optimal, and that the expected total

reward found for all scenarios are identical regardless of the demand distribution

used. The policies differ indicating there are multiple optimal solutions. The results

are presented when demand follows a Poisson process and the policy is monotone

nonincreasing.

Table 2. Factor levels used for the second Latin hypercube designed experiment.

Factor Low High
Total Number of Batteries M 25 100
Charging Capacity Φ b0.25Mc M
Swap Revenue ($) ρ 2 20
PHEVs in the Local Area γ 500 3, 000

The results from the second Latin hypercube designed experiment can be seen in

Table 3. Statistically significant factors at the 95% confidence level with respect to

the percentage of met demand include the number of batteries, M , and the number of

PHEVs in the local area, γ. This supports the intuition that the number of batteries

must be sufficient based on the number of PHEVs in the local area to meet demand.

Note that the charging capacity, Φ, and the swap revenue, ρ, are not significant

factors with respect to the percentage of demand that is met, as long as ρ is above

some threshold.

In scenario 34 when ρ = 2, the swap station meets only 0.08% of demand. In

this scenario, the optimal policy indicates to charge only when there are zero fully

charged batteries. Thus, if ρ is set too low the swap station does not have enough

incentive to have fully charged batteries available for swapping, but rather discharges

to earn a profit. In all other scenarios at least 59.07% of demand is met, even when

ρ = $2.92 in scenario 7 which meets 98.45% of demand. This indicates that there is

some threshold that ρ must be set to with respect to the charging costs Kt, for the
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swap station to have monetary incentive to meet demand over the opportunity cost

to discharge batteries. Once this threshold is met, it appears that increasing ρ does

not increase the percentage of demand that is met.
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(b) Scenario 22
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(c) Scenario 38

Figure 12. Expected demand compared to the number of batteries swapped on a
Wednesday for 3 scenarios from the Latin hypercube experiment.

The demand and battery swaps on a typical Wednesday for three scenarios are

illustrated in Figure 12. Demand is met 59.07% of the time in scenario 3. This

indicates that 60 batteries is not enough to meet demand in a location with 2,872

PHEVs. Scenario 22, where 77.32% of demand is met, indicates that 81 batteries isn’t

quite enough to meet demand when there are 1718 PHEVs in the local area. Demand

is met 99.07% of the time in scenario 38, indicating that 73 batteries is sufficient to

meet 99.07% of demand in a location with 885 PHEVs. Examining all scenarios, if

M ≥ 6%γ then consistently above 95% of demand is met.

Next, the benchmark policies are examined to assess their accuracy and speed.

For all scenarios in the second Latin hypercube experiment, the stationary benchmark

policy (SBM) is tested with C = 0.5 and the dynamic benchmark policy (DBM) with

C` = 0.25 and Cu = 0.75. These values were selected with the aim that any point

in time the swap station should have approximately half of the batteries full and

available for swapping. For all tests, the computation time, optimal expected total

reward, and expected percentage of met demand is compared to an optimal policy
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found via the monotone backward induction algorithm (BI). An optimality gap is

calculated using the optimal expected total reward υ∗N(s1) and found expected total

reward υπN(s1) for policy π using Equation (93), where an optimality gap of 0.00%

indicates an optimal solution has been found.

Optimality Gap =
υ∗N(s1)− υπN(s1)

υ∗N(s1)
(93)

The expected percentage of demand met is compared by calculating a demand

gap equal to the subtraction of the value found in the benchmark policy from the

value found in the optimal policy. With this value a positive number indicates that

the optimal policy is meeting more demand, whereas a negative number indicates the

benchmark policy is meeting more demand. The optimality gaps, demand gaps, and

elapsed computation time needed to arrive at policies can be found in Table 3.

All three solution methods require the use of probability transition matrices and

reward vectors. The average computation time for creating the probability matrices

and reward vectors was 249.40 and 4.67 seconds, respectively. Computations were

done using MATLAB R2014a software on a 2.4 GHz Intel Core i5 processor laptop

with 4GB 1600 MHz DDR3 of memory.

Disregarding scenario 34 with the unrealistically low swap revenue ρ = 2, the

stationary benchmark policy is on average 13.08% from optimal with a range of

1.11% to 28.85%. The demand gaps indicated that on average this benchmark policy

increases the percentage of met demand by 5.16%. At best, the stationary benchmark

policy increases met demand by 29.57% and at worst it decreases met demand by

26.11%. For the dynamic benchmark policy, the policy is on average 6.45% from

optimal, with the best case being 0.56% and worst 14.42%. This benchmark policy

meets on average only 0.28% less demand than the optimal policy, where in the best

case met demand is increased by 20.34% and at worst met demand is decreased by
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28.58%.

Table 3. Results from second Latin hypercube designed experiment.

Met Time (s) Optimality Gap Demand Gap (%)
Scenario M Φ γ ρ Demand BI SBM DBM BI SBM DBM BI SBM DBM

1 58 20 1846 4.77 74.20 % 2.24 0.15 0.16 0.00% 10.28% 4.96% 0.00 -13.47 -4.66
2 48 22 1974 18.15 71.64 % 2.03 0.42 0.14 0.00% 10.34% 5.17% 0.00 -1.75 3.88
3 60 18 2872 13.08 59.07 % 2.30 0.19 0.17 0.00% 9.08% 4.57% 0.00 -6.72 0.98
4 27 21 1077 15.38 93.33 % 1.41 0.07 0.08 0.00% 10.12% 4.67% 0.00 17.23 23.29
5 62 45 756 14.46 99.64 % 3.20 0.17 0.19 0.00% 21.82% 10.56% 0.00 -0.36 0.24
6 42 32 692 7.54 99.36 % 2.21 0.11 0.12 0.00% 16.99% 8.09% 0.00 -0.64 3.86
7 63 32 821 2.92 98.45 % 2.47 0.17 0.17 0.00% 7.24% 3.50% 0.00 -1.55 -0.89
8 44 28 2936 17.69 59.69 % 2.77 0.12 0.13 0.00% 7.01% 3.51% 0.00 9.23 12.47
9 75 31 628 16.77 99.86 % 2.19 0.20 0.23 0.00% 25.73% 12.52% 0.00 -0.14 -0.14
10 92 63 2615 10.77 69.31 % 7.47 0.36 0.27 0.00% 13.05% 6.52% 0.00 -24.31 -15.38
11 65 32 2808 5.69 62.15 % 3.48 0.19 0.20 0.00% 8.80% 4.40% 0.00 -9.77 -4.66
12 56 47 2744 8.92 65.46 % 4.11 0.17 0.16 0.00% 8.69% 4.34% 0.00 0.92 5.40
13 38 23 1590 3.85 79.83 % 1.99 0.10 0.11 0.00% 7.80% 3.69% 0.00 7.70 13.72
14 94 36 2679 14.92 63.99 % 3.93 0.27 0.26 0.00% 13.36% 6.54% 0.00 -29.57 -20.34
15 85 63 1269 20.00 92.96 % 5.38 0.24 0.25 0.00% 19.98% 9.99% 0.00 -7.04 -5.56
16 100 63 1782 6.15 79.94 % 5.94 0.29 0.36 0.00% 15.45% 7.73% 0.00 -20.06 -15.84
17 50 24 1141 9.85 90.66 % 2.21 0.15 0.18 0.00% 14.86% 7.13% 0.00 -8.69 0.00
18 54 48 1462 19.54 85.77 % 4.41 0.16 0.19 0.00% 14.03% 6.76% 0.00 -9.25 0.32
19 79 75 2038 12.62 77.43 % 6.81 0.21 0.24 0.00% 13.93% 6.78% 0.00 -19.93 -11.10
20 96 79 564 14.00 100.00 % 6.16 0.26 0.29 0.00% 28.85% 14.42% 0.00 0.00 0.00
21 40 10 1910 11.69 66.32 % 1.30 0.11 0.12 0.00% 9.04% 4.98% 0.00 0.85 10.00
22 81 29 1718 19.08 77.32 % 3.01 0.22 0.23 0.00% 16.23% 8.12% 0.00 -22.63 -16.31
23 98 52 1397 13.54 89.24 % 5.05 0.38 0.29 0.00% 20.06% 9.83% 0.00 -10.76 -9.20
24 29 11 1013 16.31 92.50 % 1.56 0.13 0.08 0.00% 11.23% 5.61% 0.00 9.41 16.09
25 88 50 500 8.46 100.00 % 3.54 0.31 0.25 0.00% 26.24% 13.12% 0.00 0.00 0.00
26 33 14 2551 4.31 61.95 % 1.65 0.09 0.10 0.00% 5.28% 2.65% 0.00 16.32 20.03
27 87 58 2359 18.62 70.85 % 5.98 0.25 0.25 0.00% 13.82% 6.75% 0.00 -25.01 -16.03
28 83 71 2423 3.38 77.56 % 7.55 0.23 0.25 0.00% 8.15% 3.97% 0.00 -15.29 -6.51
29 25 22 2231 15.85 66.80 % 1.52 0.07 0.07 0.00% 5.24% 2.70% 0.00 26.11 28.58
30 77 20 949 8.00 95.15 % 1.91 0.20 0.23 0.00% 19.49% 9.80% 0.00 -4.85 -4.66
31 31 8 1205 5.23 79.08 % 1.44 0.08 0.09 0.00% 9.08% 4.63% 0.00 1.80 12.02
32 90 29 2167 7.08 70.04 % 3.25 0.25 0.25 0.00% 13.63% 6.66% 0.00 -28.76 -19.88
33 46 42 1654 10.31 81.69 % 3.05 0.13 0.15 0.00% 11.06% 5.29% 0.00 1.10 8.72
34 37 29 2487 2.00 0.08 % 0.32 0.10 0.11 0.00% 109.77% 113.87% 0.00 -51.05 -48.17
35 71 66 3000 17.23 62.39 % 5.66 0.20 0.20 0.00% 9.97% 4.84% 0.00 -10.77 -5.09
36 35 20 2295 11.23 65.90 % 1.91 0.10 0.10 0.00% 6.80% 3.21% 0.00 13.86 17.26
37 67 37 2103 12.15 74.21 % 3.65 0.19 0.20 0.00% 12.14% 5.89% 0.00 -15.02 -6.57
38 73 73 885 9.38 99.07 % 5.06 0.20 0.20 0.00% 20.30% 10.15% 0.00 -0.93 -0.72
39 69 49 1526 6.62 84.73 % 4.55 0.20 0.21 0.00% 13.88% 6.94% 0.00 -15.15 -8.19
40 52 50 1333 2.46 93.40 % 5.04 0.19 0.15 0.00% 1.11% 0.56% 0.00 -3.51 5.62

These results indicate that the dynamic benchmark policy outperforms the sta-

tionary benchmark policy due to decreased optimality gaps and comparable amount

of met demand. Further, these results indicate that the dynamic benchmark policy

could be a viable option for implementation at a swap station. This benchmark policy

allows for an easy calculation of the number of batteries to charge and discharge over
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time based off a target level for each hour of a week. Therefore, all that is needed is

a table with 168 numbers, one for each hour of a week. In contrast, implementation

of the optimal policy would require a very large look up table by state and time. The

results and analysis of these computational tests are summarized in the following

policy insights for a PHEV swap station manager and the power grid.

1. It is integral to have the number of batteries at a swap station M in line with

the PHEVs in the local area γ for meeting demand, maximizing expected total

reward, and allowing for discharging back to the power grid using V2G. From

the results, it is observed that M ≥ 6%γ was a sufficient value for M .

2. To ensure that the swap station is meeting demand and not solely focused on

discharging to earn revenue, the swap revenue ρ must be set appropriately.

There is a threshold level which ρ must be greater than to ensure demand is

met. After this threshold, increasing ρ did not seem to incentivize meeting

demand over discharging. For the experiments conducted, this threshold was

less than the average charging cost Kt for a week.

3. When the incentive to discharge is too high, the negative behavior of oscillating

between charging and discharging in consecutive time periods occurs at the swap

station thereby leading to further variability in the power grid. Further, when

the incentive is too low and ρ is set appropriately, discharging never occurs.

When the revenue earned from discharging is exactly the cost for charging, a

good balance of some discharging but limited oscillating behavior occurs.

4. The dynamic benchmark policy which calculates a target level for each time

period in a time horizon was superior to a stationary benchmark policy. The

action for the dynamic benchmark policy is to charge up to or discharge down to

this time dependent target level based on the number of full batteries on hand.

56



In addition to the advantage over a stationary benchmark policy, this could be

a viable policy to implement at a swap station due to its accuracy in the regards

to expected total reward and met demand, and ease of implementation.

5. With all scenarios considering different number of batteries M , charging capac-

ity Φ, swap revenue ρ, charging cost by week Kt, incentive to discharge α, and

PHEVs in a local area γ, the swap station was always able to remain profitable

with the model. Certain combinations of these factors led to greater profitabil-

ity, but this result indicates that in all circumstances considered a swap station

is a viable, profitable option for PHEVs.
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VI. Conclusions

Motivated by the movement to make transportation cleaner and more efficient, the

PHEV-SSMP is introduced. This problem considers the management of operations at

a plug-in hybrid electric vehicle (PHEV) swap station facing stochastic, nonstationary

demand for battery swaps, nonstationary prices for charging depleted batteries, and

nonstationary prices for discharging fully charged batteries utilizing V2G technology.

With this, the optimal number of batteries that the swap station should charge and

discharge over time is determined using sequential decision making over a fixed time

horizon, which results in the maximum expected total profit.

A Markov decision process model is used when demand follows a discrete proba-

bility distribution. A finite-horizon model is considered because the problem data is

highly variable with respect to time. In the model, the state of the system, or the

number of fully charged batteries on hand is observed at a certain point in time and

the swap station manager chooses the number of batteries to charge or discharge.

The action results in an immediate reward and the system transitions to a new state.

It has been proven that there exists an optimal nonincreasing monotone policy

when demand follows a discrete nonincreasing distribution. Therefore, both the back-

ward induction and monotone backward induction algorithms can be utilized to find

the optimal policy. Two easy to implement benchmark policies were created and

empirically compared to an optimal policy. In the stationary benchmark policy, the

swap station maintains a single target inventory level of fully charged batteries re-

gardless of time of day and day of week. In the dynamic benchmark policy, the swap

station maintains a distinct target inventory level for each time period which takes

into account current and future charging costs.

Two Latin hypercube designed experiments were performed to computationally

test the optimal solution method and two benchmark policies. The first experiment
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is conducted to gain overall information for various parameter inputs for the swap

station. Specifically, the incentive which should be given by the power company is

determined and other statistically significant factors are analyed. The second exper-

iment is conducted to gain insight into what the controllable parameters should be

set to at a swap station (e.g., number of batteries, swap price) in relationship to the

number of PHEVs in a local area and power prices.

From this analysis, it is determined that the dynamic benchmark policy is best,

the number of batteries M is an integral parameter, α needs to be appropriately

set by the power company to encourage discharging and not oscillating behavior,

and other policy insights. Following the culmination of this work and Widrick et

al. [40], future work should consider how the swap price ρ impacts the demand for

swaps in comparison to using at home charging or a charging station. Further, the

uncertainties regarding the power prices, power load, and other renewables should

be incorporated into the state space of the MDP to fully capture the load balancing

potential of a PHEV swap station.
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